
Blind Vote: Economical and Secret Blockchain-based Voting

Amir Kafshdar Goharshady
Department of Computer Science and Engineering

Department of Mathematics
Hong Kong University of Science and Technology

Hong Kong SAR, China
goharshady@cse.ust.hk

Zhaorun Lin
Department of Computer Science and Engineering
Hong Kong University of Science and Technology

Hong Kong SAR, China
zlinba@connect.ust.hk

Abstract—Electronic voting has been a hot research topic for
decades and has recently garnered much attention due to the
invention of programmable blockchains that support smart
contracts. This is the ideal framework and technology for
electronic voting since voting protocols implemented as smart
contracts automatically inherit many desired properties from
the underlying blockchain, e.g. verifiability, transparency and
pseduonymity. However, the public and decentralized nature of
the blockchain allows all transactions to be traced by everyone
and thus voters’ choices would be disclosed publicly. There
are many solutions to make blockchain-based voting fully
anonymous and untraceable. A recent example is Tornado
Vote [1] (ICBC 2023). Such protocols often rely on zero-
knowledge proofs, especially zkSNARKS, to achieve secrecy
and break the link between a voter’s public key and vote.
However, verifying these proofs on-chain is expensive and uses
a considerable amount of gas (execution fees).

In this work, we propose a new approach called Blind Vote,
which is an untraceable, secure, efficient, secrecy-preserving
and fully on-chain electronic voting protocol based on the well-
known concept of Chaum’s blind signatures. We illustrate that
our approach achieves the same security guarantees as previous
methods such as Tornado Vote, while consuming significantly
less gas. Thus, we provide a cheaper and considerably more
gas-efficient alternative for anonymous blockchain-based vot-
ing.

Index Terms—Electronic Voting, Blind Signatures, Smart Con-
tracts

1. Introduction

Blockchain. While the blockchain protocol was originally
developed to support the Bitcoin cryptocurrency [2], it soon
found many further use-cases due to the promising proper-
ties it provides, such as decentralization, transparency, and
irreversibility. Specifically, it was realized that the same
protocol can be used to reach a consensus about the results
of any well-defined computation, leading to programmable
blockchains such as Ethereum that support arbitrary smart
contracts written in a Turing-complete language [3]. This

enabled the creation of a wide variety of blockchain-based
services and decentralized applications.
Traditional Voting. Voting is a democratic process that
requires both confidentiality and accountability. In a typical
voting scenario, every participant or third party should be
able to verify the result, i.e. the tally, of the process but
no participant’s choice shall be leaked. In physical voting
protocols, voters have to show up in person to cast their bal-
lots and are only informed of the results after a centralized
organization performs tallying. Of course, if the voting is for
an office, the candidates will each have representatives in the
tallying process to create more trust in the system. Never-
theless, this process is opaque and effectively a black box
from the point-of-view of the voters and hence undermines
voter confidence. See [4] for a more detailed discussion of
this point.
Electronic Voting. Designing schemes and protocols for
electronic voting has been a hot research topic for several
decades. We refer to [5] for an excellent survey. In this work,
we are especially interested in blockchain-based voting. This
is because smart contracts hosted on the blockchain effec-
tively inherit many of its characteristics, such as verifiability
and transparency, which are desirable in a voting protocol.
The literature in this domain is vast and there is no way we
can do justice to all the previous approaches. Thus, we refer
to [6] for a survey of blockchain-based voting methods. We
cover some of the most related previous works in Section 2.
Specifically, the closest previous work is Tornado Vote [1]
(ICBC 2023) which provides an anonymous blockchain-
based voting protocol based on zero-knowledge proofs.
Our Contribution. In this work, we present a novel
blockchain-based voting protocol using a combination of
commitment schemes and Chaum’s blind signatures as our
cryptographic primitives. Our protocol provides the same
security guarantees as previous methods, such as Tornado
Vote [1]. However, it is important to note that, unlike previ-
ous approaches, we purposely avoid zero-knowledge proofs
and zkSNARKS. This is an intentional choice to reduce
the gas usage (execution costs) of the resulting smart con-
tract. Thus, we present a cheap and gas-efficient anonymous
blockchain-based voting protocol without compromising any



of the usual security guarantees.
Organization. We provide an overview of the most related
prior works in Section 2. This is followed by the prelim-
inaries needed for our approach, namely blind signatures
and commitment schemes, in Section 3. Then, we present
our Blind Vote protocol in Section 4. Section 5 establishes
the security properties of Blind Vote. Finally, Section 6
compares its gas usage and costs with Tornado Vote [1],
illustrating the real-world cost benefits of Blind Vote over
the previous state-of-the-art.

2. Related Works

Electronic voting is a vast field with many contributions.
Since it would be impossible to enumerate all of the many
approaches developed over decades of research, in this
section, we consider several of the most related previous
works. We refer to [4]–[6] for a more detailed overview of
other voting methods.
Desired Properties of an Electronic Voting Protocol. The
early work [7], which predates blockchain, identifies the
required security properties of a secure electronic voting
system as follows (quoted from [7]):
• Completeness: All valid votes are counted correctly.
• Soundness: A dishonest voter cannot disrupt the voting.
• Privacy: All votes must be secret.
• Unreusability: No voter can vote twice.
• Eligibility: No one who is not allowed to vote can vote.
• Fairness: Nothing must affect the voting.
• Verifiability: No one can falsify the result of the voting.

Overview of Previous Works. Many of these properties are
attained by default when the voting is implemented as a
smart contract. Most importantly, if anyone is eligible to
vote, then privacy is achieved by default on blockchain
since one cannot associate an account, which is basically
a public-private key pair, to a real-life person. However,
deanonymization and profiling can still pose threats to pri-
vacy [8]. Additionally, in the natural case that we have a
predefined set of eligible voters identified by their public
keys (accounts), privacy is no longer a given since ev-
ery transaction on the blockchain is public and traceable.
Therefore, untraceability, i.e. a disconnect between a voter’s
public key and their vote, is also needed for a protocol to
be secure. We often use the word secrecy as a shorthand
for untraceability and privacy. There are a wide variety of
protocols that aim to achieve secrecy. Examples include the
use of homomorphic encryption [9], anonymous off-chain
communication channels [7], [10] and, most commonly,
standardized tokens and zero-knowledge proofs [1], [11]–
[14].

Some approaches sacrifice secrecy or provide a weaker
guarantee of privacy. For example, in [7] voters first send
their votes to an administrator for it to add a signature us-
ing blinding techniques. After retrieving the signatures, the
voters then forward the votes to a counter for it to count the
votes and accumulate the results. Although being scalable,
this protocol uses an anonymous communication channel as

a means to break the link between voters and their votes.
However, this practice has two drawbacks: (i) the counter
is centralized, and (ii) in the absence of the blockchain pro-
tocol, the voters have to perform off-chain communications
with the administrator and the counter. These communica-
tions can potentially be traced by internet service providers
or other intermediaries and used to unmask the voters [15].
Moreover, completeness can be violated if the centralized
entities refuse to process valid communications from a voter.

Secrecy via Homomorphic Encryption. The work [9]
presents a voting protocol that uses a cryptosystem with an
additive homomorphic property to achieve anonymity. The
idea is pretty elegant. Here, we provide a simplified outline.
In the Paillier cryptosystem, for any two messages m1 and
m2, we can multiply (aggregate) their encryptions to obtain
an encryption of m1+m2. This can be adapted to voting in
a natural way. An administrator first publishes their Paillier
public key on the smart contract. The voters then encrypt
their votes using this public key before submitting them to
the contract. The contract tallies the votes by multiplying
ciphertexts. When the voting is over, the administrator de-
crypts the final (tallied) ciphertext and hence reveals the
final results.

Although the ciphertexts (encrypted votes) are visible
all the time on the blockchain, one cannot decrypt them
without the private key and hence the votes are secret from
the network’s point-of-view. However, a lethal drawback of
this scheme is that there is always an administrator who
should set up the voting and hence possesses the private key.
They can always decrypt the ciphertexts off-chain. Thus,
there is no secrecy against the administrator. Also, a voter’s
vote cannot be verified efficiently as it should be encrypted.
So, a malicious voter can cast an invalid ballot and affect
the overall correctness of the results.

Tornado Vote. Tornado Vote [1] is the most recent and
one of the closest related works. It achieves all the desired
properties listed above. At its core, Tornado Vote uses a
cryptocurrency mixer called Tornado Cash [16] together
with zero-knowledge proofs and a relayer infrastructure to
achieve secrecy. It uses its own custom ERC-20 for each
election. The basic idea is to use zero-knowledge proofs to
disconnect voter identities from their votes.

Tornado Vote considers three types of users: adminis-
trator, voter and relayer. The role of the administrator is
to set up the voting and give eligibility tokens to voters.
The role of the relayers, who are often accessed through a
secure channel such as Tor, is to send messages to the smart
contract on behalf of the voters, ensuring that the source of
a message cannot be identified. Note that our protocol does
not rely on Tor and obtaining privacy between the users and
relayers using Tor, VPNs or other tools is an orthogonal
problem. Since each vote is effectively a token (a piece
of currency), voting between k options can be seen as a
transfer of money from the voters to one of k predetermined
accounts. Mixers, such as Tornado Cash [16], enable such
transfers in a way that disconnects the sender and recipient.
In a voting setting, this mixing property is exactly the same



as the secrecy property, i.e. the sender is the voter and the
target account is the chosen vote.

Despite providing all the desired security guarantees,
a major drawback of Tornado Vote is its high gas usage.
Indeed, the authors make several gas-optimizing choices,
such as using different hash functions in various stages, to
ameliorate this problem [1]. However, the issue is inherent
and already present in Tornado Cash. Its root cause is the
necessity of sending zero-knowledge proofs to the smart
contract and verifying them on-chain.

In this work, we provide an alternative method which
does not require zero-knowledge proofs at all and in-
stead builds upon much more gas-efficient cryptographic
primitives such as blind signatures and basic commitment
schemes. The result is a huge saving in the overall gas costs
of the election. Voting methods based on blind signatures
were previously considered in [17], [18]. In comparison with
these protocols, our approach (and TornadoVote) provide
stronger privacy guarantees, as well as the added ability to
delegate votes to third-parties.

3. Preliminaries

Our protocol is quite simple and uses only two classical
ingredients: blind signatures and commitment schemes.
Blind Signatures. The concept of a blind signature was first
introduced by Chaum in [19] to provide both anonymity and
privacy to payees in digital cash systems. It allows a payer
to obtain a certificate from the bank that blinds it so that
the bank can only know the proof of payments but not the
identities of the payers. Unsurprisingly, this has already been
used for voting, too [20]. However, both the concept of blind
signatures and the voting protocols building upon it predate
blockchains.

In this work, we use the most classical implementation
of blind signatures using RSA [21]. Suppose the bank has
an RSA public key (N, e) and its corresponding private key
d, and that Alice wants to pay Bob 1 dollar. The protocol
goes as follows:
• Alice constructs a banknote, which is a string b =

‘This is a banknote with serial XXX...XXX’. The se-
rial number is a random value chosen by Alice. She
then computes h = hash(b) using a pre-defined cryp-
tographic hash function.

• Alice chooses a random number r and keeps it secret.
She computes h′ = h · re and sends it to the bank.
Note that, as standard in RSA, all calculations are done
modulo N and re is the result of encrypting r using
the bank’s public key e.

• The bank signs h′ and sends h′d to Alice. It also
deducts 1 dollar from Alice’s balance.

• Knowing r, Alice can easily compute its modular
multiplicative inverse r−1. She then obtains the bank’s
signature on h, i.e. hd, by a simple calculation:

h′d · r−1 = hd · re·d · r−1 = hd · r · r−1 = hd.

• Alice sends (b, hd) to Bob.

• Bob immediately sends (b, hd) to the bank. The bank
checks that hd is a correct signature on the hash h =
hash(b). It also checks that b is well-formed and the
serial number in b has not been used before. If the
checks pass, it increases Bob’s account balance by 1
dollar.

The beauty of the protocol above is that the bank never
saw b or h when signing h′. Indeed, knowledge of h′ =
h · re does not give the bank any information about h due
to the existence of the random nonce r, which serves as the
blinding factor. Thus, when presented with (b, hd) by Bob,
the bank is able to verify that b is indeed a valid banknote
signed by itself at some point, but it cannot unmask Alice
or distinguish her or her banknote from any other banknote
of the same denomination.

In the following section, we will develop the idea of
using blind signatures to mask voters’ identities so as to
break the link between the voter and their vote and thus
achieve secrecy.

Commitment Schemes. Commitment schemes are a standard
cryptographic primitive and often used in blockchain-based
protocols. They help mimic simultaneous actions by a group
of participants. More precisely, consider n participants who
should each send a message to a smart contract. For exam-
ple, the message can be a bid in an auction. Our goal is to
ensure that no participant can know anyone else’s message
before choosing his own. In the protocol, instead of directly
sending a message m, a participant will first hash it with a
nonce r to produce h = hash(m, r). Then, he sends the hash
h to the smart contract in the commit phase. The contract
records the hash. In the reveal phase, each participant will
send (m, r) to the contract, who can in turn compute their
hash and ensure the message was not changed.

The simultaneous effect is achieved because hashes in
the commit phase leak no information, and hence no one
can submit their messages based on any information about
the other participants. Moreover, since cryptographic hash
functions are collision resistant, one cannot change the
message after the commitment phase. In Blind Vote, we will
use commitment schemes to mimic simultaneous voting by
all eligible voters.

4. Our Protocol

In this section, we describe our protocol for blockchain-
based secret voting using blind signatures. As in Tornado
Vote [1], our approach also considers three types of users:
an administrator, n voters and a number of relayers.

Our approach consists of the following steps:

Step 0. Deployment. The administrator deploys the Blind
Vote contract on the blockchain. During deployment, the
following values are set in the contract’s constructor (chosen
by the administrator):
• The maximum number nmax of allowed voters.
• A registration fee f that has to be paid by every voter;
• A relay reward ρ that will be paid to each relay;



• A deposit δ, which is paid at the time of deployment
by the administrator;

• Time limits t1 < t2 < . . . < t6 for the following steps
of the protocol. Smart contract functions in each step j
of the protocol can only be called after time tj−1 and
before or on tj .

The administrator has to ensure that ρ is large enough to
cover the gas fees for relays and additionally incentivize
them, and that f and δ are large enough for the contract to
be able to pay all relays.

Administrator

Blind Vote
Contract
(BVC)

Figure 1. An illustration of Step 0 of Blind Vote.

Step 1. Voter Registration. This step is open until time
t1. For every eligible voter i who has address ai on the
blockchain, the administrator calls a function approve(ai),
adding the voter’s address to the voting roll. The contract
keeps track of all ai’s. Additionally, each voter should
register in the same step, i.e. by time t1, by calling the
register() function in our smart contract and paying
a deposit of f. A voter can take part in the remainder
of the protocol only if both the registration and approval
are done by time t1. A voter who registers but is not
approved by time t1 can receive a refund after t1 by calling
step1_refund(). The contract keeps track of the total
number n of valid voters and their addresses and would not
allow n to exceed the maximum set in the previous step.

Administrator

Blind
Vote

Contract
(BVC)

Voter 1

Voter 2

Voter n

Figure 2. An illustration of Step 1 of Blind Vote. We use the color red for
the administrator and green for voters.

Step 2. Initialization. The administrator generates an RSA
public key (N, e) and the corresponding secret key d. He
calls the function initiate(N, e) of the contract. The

contract records N and e, which are now public knowledge.
Here, N is the RSA modulus and xe mod N is the encryp-
tion/signature verification of x. Conversely, yd mod N is
the decryption/signature on y.

Administrator

Blind Vote
Contract
(BVC)

Figure 3. An illustration of Step 2 of Blind Vote. We show secrets in red
and public information in black.

Step 3. Delegation. Each voter i chooses an RSA public key
(Ni, ei) and a corresponding secret key di. She keeps all of
these values secret for the moment. The voter’s goal is to
delegate her voting rights to anyone who can sign using di,
i.e. herself, while making sure that no one can connect di
to her publicly-known blockchain address ai. For this, she
uses a blind signature scheme as follows:
• Compute hi = hash(Ni, ei).
• Choose a random blinding factor ri and calculate h′i =
hi · rei mod N. Recall e is administrator’s public key.

• Submit h′i to the contract by calling delegate(h′i).
The contract records the value of h′i.

The goal is to get the administrator’s signature on hi,
i.e. si := hdi mod N , which serves as a proof that anyone
controlling the private key corresponding to (Ni, ei) can cast
a vote.

Voter iBlind Vote
Contract
(BVC)

Figure 4. An illustration of Step 3 of Blind Vote.

Step 4. Blind Signature. For every h′i provided in the
previous step, the administrator computes the signature
s′i = h′i

d
mod N and announces it to the contract by

calling blind_sign(ai, s′i). The contract checks that s′i
is a valid signature on h′i and, if so, stores it. The voter
i can now unblind the signature on her own machine by
computing

si = s′i ·r−1i = h′i
d ·r−1i = hdi ·re·di ·r−1i = hdi ·ri ·r−1i = hdi ,

where all calculations are done modulo N. The latter is
the administrator’s RSA signature on hi = hash(Ni, ei).
Thus, the voter now has the administrator’s signature on
her own RSA public key without having revealed it to the
administrator or anyone else.



Administrator Blind Vote
Contract
(BVC)

Voter i

Figure 5. An illustration of Step 4 of Blind Vote.

At this point, each voter i’s ability to cast a vote is
delegated to the RSA private key she chose and is no longer
connected to her blockchain identity/account address ai.
Specifically, anyone who owns the secret key di correspond-
ing to a public key (Ni, ei) whose hash hi = hash(Ni, ei) is
signed by the administrator can cast a vote. In other words,
the administrator’s signature on hi is seen as a proof of
eligibility for the owner of the corresponding secret key to
have one vote in the election.

Relaying. In the next step, voter i will choose her vote vi.
However, she cannot simply send this vote to the contract,
since that would (i) leak her identity, and (ii) allow other
voters to see her vote before deciding theirs. To overcome
(i), we use the standard technique of relaying. A relay is a
blockchain participant who is willing to submit a function
call to the contract on behalf of a voter in exchange for a
reward. As is standard, we assume that the voters can send
anonymous messages to a public notice board that is seen by
relays. We also assume that this does not leak their identity
or IP address as they can use services such as Tor to hide
this information. A relay can then check if a function call
is profitable for them, and if so, is incentivized to make the
call on behalf of the voter. Our relaying mechanism matches
those of Tornado Vote [1] and Tornado Cash [16]. To solve
problem (ii), we apply a standard commitment scheme.

Step 5. Commitment. Each voter i who wants to vote vi
chooses a random nonce xi and computes ci := hash(vi, xi).
There is a function commit(Ni, ei, si, ci, sci) in the smart
contract that can be called by anyone on the blockchain
network, including relays. This function is used to commit
to a particular vote. When this function is called, the contract
checks the following:

• The commit() function was previously called suc-
cessfully no more than n times.

• (Ni, ei) is a valid RSA public key.
• si is the administrator’s RSA signature on the hash

of the public key (Ni, ei). In other words, sei =
hash(Ni, ei) mod N.

• ci is a string that serves as the commitment to a vote.
• sci is a valid RSA signature on ci using the private

key corresponding to (Ni, ei). Formally, sceii = ci
mod Ni.

• This is the first time this function is called and
passed the checks above for the current combination
of (Ni, ei, si).

If all these checks pass, the contract records the commitment
ci. It also pays a reward of ρ to the caller of the commit()
function, who is presumed to be a relay.

Blind Vote
Contract
(BVC)

Voter i

Tor

Relay

Public Notice
Board

Figure 6. An illustration of Step 5 of Blind Vote.

Step 6. Revealing. Finally, after all the commitments to the
votes are submitted to the contract in the previous section,
the voters reveal their votes. This is also done through
a relay to preserve their privacy. Specifically, there is a
function reveal(ci, vi, xi) which can be called by anyone,
including the relays. This function checks the following:

• ci was a commitment from the previous step and was
not revealed before.

• hash(vi, xi) = ci.

If the checks pass, the contract records the vote vi, updates
the tally as necessary, and pays a reward of ρ to the caller
of the reveal() function who can be the relay1.

1. It is possible for the voter to call this function herself if she does not
care about secrecy. The same applies to commit().



Blind Vote
Contract
(BVC)Voter i

Tor

Relay

Public Notice
Board

Figure 7. An illustration of Step 6 of Blind Vote.

If all the steps above are performed correctly, then the
votes are submitted to the smart contract using the RSA
identities (Ni, ei) which are blinded and thus disconnected
from the voters’ actual blockchain identity/account address
ai. So, we have a working blockchain-based protocol for
secret voting using only blind signatures and commitment
schemes.
Verifications, Incentives and Penalties. To ensure that all
parties follow the protocol correctly, we have the following
incentive structure:
• After Step 1, any voter who fails to register is excluded

from voting.
• After Step 3, any registered voter who fails to success-

fully call delegate() loses the ability to vote, but
also her deposit f.

• After Step 4, if the administrator fails to sign one
of the h′i values provided by a voter in the previ-
ous step, the voting is canceled and this is seen as
cheating. This can be reported by anyone by call-
ing report_refused_signature(i). Thus, the
administrator’s deposit δ is confiscated and paid to
the voters. More specifically, each voter i can call a
function step4_refund() to receive f + δ/n in her
original address ai. This will deter the administrator
from cheating and, assuming d is chosen to be large
enough, ensures that the voters are compensated for
their gas fees and also get their deposits back. Thus,
the administrator has to provide exactly n signatures in
Step 4 for the protocol to continue.

• In Steps 5 and 6, relays are incentivized to submit the
commitment/revealing function calls on behalf of the
voters since they will receive a reward of ρ for this.

• After Step 5, if the commit() function is successfully
called more than n times, this means the administrator
cheated and provided extra RSA signatures in addition
to the ones in Step 4. In this case, the voting is can-
celed again, the administrator’s deposit is confiscated
and paid to the voters. As before, each voter i can
withdraw f + δ′/n into her account ai by calling

step5_refund(). Here, δ′ is the remaining deposit
of the administrator, after subtracting the relay fees.

• A voter who fails to submit her commitment in Step
5 has effectively failed to vote. We assume everyone
is naturally incentivized to vote and no one would
voluntarily decide not to commit at this step. The same
applies to revealing in Step 6.

• If all steps are performed correctly and none of
the cases above happen, the administrator can call
admin_refund() after time t6 to receive his de-
posit d back. Similarly, each voter i can call
voter_refund() to receive a refund of f − 2 · ρ,
i.e. her initial deposit minus the relaying fees for her
messages in Steps 5–6.

Generality of Votes. We note that blind vote can support any
system of voting since we are not assuming any particular
structure on the votes vi. Moreover, the tallying can follow
any desired formula and the votes do not have to necessarily
be a choice out of a fixed set of options. In this sense, our
approach is strictly more general than Tornado Vote [1], in
which every voter has to choose a vote from a pre-fixed set
of possible options. For example, our approach would allow
proportional ranked choice voting [22].
Delegation of Voting Rights. In Blind Vote, a voter can
easily delegate her voting rights to someone else. In Step
3, the voter i is delegating her voting rights to anyone who
has the RSA secret key di corresponding to the public key
(Ni, ei). When explaining the algorithm, we presumed that
the RSA key pair is generated by the voter herself. However,
if she wants to delegate the voting rights to someone else,
she can ask them to generate their key pair and only give
their public key to her. She will then use this public key in
Steps 3 and 4, and provide the unblinded signature si to the
delegate. Knowing si, the delegate takes over Steps 5 and
6 and votes.
Improvements in Gas. There are a number of ways in
which we can improve the gas usage of our protocol above,
mainly by reducing the amount of storage used by the
contract or moving parts of the computations off-chain. We
assume that the voters have a secure communication channel
with the administrator. We can thus apply the following
optimizations:
• Moving Steps 3 and 4 off-chain. In Step 3, each

voter i sends her h′i directly to the administrator. This
message is authenticated and includes a signature σi
corresponding to the user’s blockchain identity ai. The
administrator then signs h′i and sends the signature s′i
back to voter i. This whole communication happens
off-chain. Only if the administrator fails to provide a
valid blind signature s′i off-chain does the voter call the
delegate() function on-chain and the administrator
will then be required to call blind_sign(ai, s′i) on-
chain, too. If the voter has already received a blind
signature on h′i but then demands another blind signa-
ture on a different value h′′i , then the administrator can
call a function report(i, h′i, σi). This proves that the
voter is trying to cheat, allowing the administrator not



to provide another signature and also confiscating the
voter’s deposit.
This change ensures that, as long as both the voter and
administrator are rational and thus prefer not to pay
extra gas fees, Steps 3 and 4 can be done off-chain
and for free. However, if any party tries to be dishonest,
then the normal on-chain protocol will be followed and
both will be required to pay gas fees (and potentially
also lose their deposit).

• Premature Commitment. Suppose the voter has already
chosen her vote vi after Step 2. We can modify the
protocol and consider a variant in which the voter
does not try to obtain a blind signature on her own
public key (Ni, ei) in Steps 3 and 4, but instead tries
to get the administrator’s signature directly on her
commitment ci = hash(vi, xi). In this variant, Step 3
will change so that we have hi = ci. Step 5 will then
be simplified with the commit(si, ci) function needing
access to only si and ci and verifying that si is the
administrator’s signature on ci, i.e. sei = ci mod N.
While this idea reduces the gas usage, the tradeoff is
that it precludes the possibility of delegating the voting
rights to a separate person as outlined above.

5. Security Analysis

We now provide brief arguments as to why Blind Vote
satisfies all the desired security properties of a secret voting
scheme. The most important property, i.e. secrecy, is natu-
rally inherited from blind signatures. Most other properties
are inherited directly from the blockchain.
• Eligibility: The eligibility to vote is established in Step

1, where the administrator approves all eligible voters.
This can also be moved to Step 0, by asking the
administrator to provide a hard-coded list of eligible
voters. No one other than the eligible voters or the ad-
ministrator can compute the the blind signatures needed
to make a commitment in Step 5. If the administrator
cheats and adds extra commitments, there will be more
than n valid commitments and the contract penalizes
him and cancels the vote. So, there is no incentive for
such cheating.

• Completeness: As long as the time allocated to each
step is sufficiently long to ensure the voters/relayers
will be successful in calling the contract’s functions,
all valid votes will be committed to in Step 5 and then
revealed in Step 6. This ensures completeness.

• Soundness: No voter’s conduct has any effect on the
other voters’ ability to vote. A voter who does not
follow the protocol correctly can only lose her own
voting right / deposit but cannot disrupt the voting.

• Secrecy: This important property is inherited from blind
signatures. Since each voter’s blockchain identity /
account address ai is completely disconnected from
the RSA keys she uses to cast her vote by a blinding
process in Steps 3 and 4, there is no way to distinguish
the source of a particular vote or the vote of a particular
voter.

Step Function Min Max Paid by
0 constructor - 6967k Admin

1 approve - 71k Admin
register 87k 123k Voter

2 initiate - 358k Admin
3 delegate - 79k Voter
4 blind_sign 80k 259k Admin

5 commit 294k 309k Relay
commit_premature 119k 210k Relay

6 reveal 94k 152k Relay

Refund

admin_refund - 52k Admin
voter_refund - 83k Voter
step1_refund - 86k Voter
step4_refund - 62k Voter
step5_refund - 76k Voter

Report report_refused_signature - 85k Voter

TABLE 1. THE GAS USAGE OF EACH FUNCTION IN OUR
IMPLEMENTATION.

• Unreusability: Every voter can obtain only one signa-
ture of the administrator on a single hash in Step 4.
This signature can then be used only once to commit
to a single vote in Step 5. Thus, no voter can vote
twice.

• Fairness: No one can affect the voting or its results.
The administrator is obliged by his deposit to provide
the blind signatures correctly in Step 4. As argued,
he cannot add extra signatures either. Each voter votes
exactly once. A relay cannot affect the results of the
voting since they can only get paid their reward ρ if
they relay a correct message and everything is verified
by the contract. An outside party other than the admin-
istrator, voters and relays, has no way of affecting the
contract or calling any of its functions.

• Verifiability: The blind signatures and commitment
schemes are automatically verified by the smart con-
tract and any function call that violates them is au-
tomatically rejected. However, since blockchain data
is public, anyone with access to the blockchain can
separately verify the correctness of the results on their
own.

6. Implementation and Performance Analysis

We have implemented Blind Vote as an Ethereum smart
contract written in Solidity. As mentioned above, in Blind
Vote most of the computations are moved off-chain and
hence do not incur gas costs. Moreover, the on-chain com-
putations involve simple and efficient operations such as
verifying RSA signatures or computing hashes. We inten-
tionally avoided gas-inefficient operations such as on-chain
verification of zero-knowledge proofs. We also store only
a tiny amount of information on-chain. To obtain exact
gas consumption numbers, we deployed our contract on
Remix [23], allowing us to calculate the gas usage of each
function call, which is shown in Table 1.

Figure 8 compares the gas usage of our approach with 3
previous state-of-the-art blockchain-based voting protocols,



0 250 500 750 1,000
0

5

10

15

20

25

30

35

Number of Voters

G
as

co
st

(×
1
0
8

G
w

ei
)

Boardroom Voting
Tornado Vote

Metamask
Blind Vote

Gas optimized BV

Figure 8. Gas comparison of different protocols

namely [1], [11], [24], based on the number n of voters.
Our approach significantly outperforms these methods and,
assuming that there are 1000 voters, reduces the gas usage
by 43.4%, 61.9%, and 83.1% in comparison to Metamask,
Tornado Vote and Boardroom voting, respectively. Among
these Tornado Vote is the previous state-of-the-art and the
only method that provides the same security guarantees
as our approach. Moreover, as Figure 8 shows, the im-
provement gets more pronounced as the number of voters
increases.

7. Conclusion

We presented Blind Vote: a secure and gas-efficient ap-
proach for secret voting on the blockchain. Blind Vote uses
a combination of RSA blind signatures and commitment
schemes to attain all the standard desired security properties
of a voting protocol, as well as secrecy, i.e. it is impossible
to know which voter cast a particular vote or which vote
belongs to a particular voter. We implemented Blind Vote as
a free and open-source smart contract and compared its gas
usage with previous state-of-the-art blockchain-based secret
voting protocols. Blind Vote outperformed these methods
significantly in terms of gas usage and obtained improve-
ments of around 40 to 80 percent, hence making blockchain-
based secret voting considerably more affordable.

8. Acknowledgments and Notes

The research was partially supported by the Hong Kong
Research Grants Council ECS Project Number 26208122.
Authors are ordered alphabetically.

References

[1] R. Muth and F. Tschorsch, “Tornado vote: Anonymous blockchain-
based voting,” in ICBC, 2023, pp. 1–9.

[2] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.

[3] G. Wood et al., “Ethereum: A secure decentralised generalised trans-
action ledger,” Ethereum project yellow paper, pp. 1–32, 2014.

[4] T. Moura and A. Gomes, “Blockchain voting and its effects on elec-
tion transparency and voter confidence,” in International Conference
on Digital Government Research, 2017, pp. 574–575.

[5] M. F. Mursi, G. M. Assassa, A. Abdelhafez, and K. M. A. Samra,
“On the development of electronic voting: a survey,” International
Journal of Computer Applications, vol. 61, no. 16, 2013.

[6] F. Þ. Hjálmarsson, G. K. Hreiðarsson, M. Hamdaqa, and
G. Hjálmtỳsson, “Blockchain-based e-voting system,” in CLOUD.

[7] A. Fujioka, T. Okamoto, and K. Ohta, “A practical secret voting
scheme for large scale elections,” in AUSCRYPT, 1993, pp. 244–251.

[8] F. Béres, I. A. Seres, A. A. Benczúr, and M. Quintyne-Collins,
“Blockchain is watching you: Profiling and deanonymizing ethereum
users,” in DAPPS, 2021, pp. 69–78.

[9] S. M. Anggriane, S. M. Nasution, and F. Azmi, “Advanced e-voting
system using Paillier homomorphic encryption algorithm,” in ICIC,
2016, pp. 338–342.

[10] J. C. P. Carcia, A. Benslimane, and S. Boutalbi, “Blockchain-based
system for e-voting using blind signature protocol,” in GLOBECOM,
2021, pp. 01–06.

[11] P. McCorry, S. F. Shahandashti, and F. Hao, “A smart contract for
boardroom voting with maximum voter privacy,” in FC, 2017, pp.
357–375.

[12] F. Hao, P. Y. A. Ryan, and P. Zielinski, “Anonymous voting by two-
round public discussion,” IET Inf. Secur., vol. 4, no. 2, pp. 62–67,
2010.

[13] C. Killer, M. Eck, B. Rodrigues, J. von der Assen, R. Staubli, and
B. Stiller, “ProvotuMN: Decentralized, mix-net-based, and receipt-
free voting system,” in ICBC, 2022, pp. 1–9.

[14] C. Killer, M. Knecht, C. Müller, B. Rodrigues, E. J. Scheid, M. F.
Franco, and B. Stiller, “Æternum: A decentralized voting system with
unconditional privacy,” in ICBC, 2021, pp. 1–9.

[15] A. B. Ayed, “A conceptual secure blockchain-based electronic voting
system,” International Journal of Network Security & Its Applica-
tions, vol. 9, no. 3, pp. 01–09, 2017.

[16] A. Pertsev, R. Semenov, and R. Storm, “Tornado cash privacy solution
version 1.4,” 2019.

[17] Y. Liu and Q. Wang, “An e-voting protocol based on blockchain,”
IACR Cryptol. ePrint Arch., p. 1043, 2017.

[18] F. S. Hardwick, A. Gioulis, R. N. Akram, and K. Markantonakis, “E-
voting with blockchain: An e-voting protocol with decentralisation
and voter privacy,” in iThings/GreenCom/CPSCom/SmartData, 2018,
pp. 1561–1567.

[19] D. Chaum, “Blind signatures for untraceable payments,” in CRYPTO,
1983, pp. 199–203.

[20] M. Schmid and A. Grünert, “Blind signatures and blind signature e-
voting protocols,” University of Applied Science Biel: Bern, Switzer-
land, 2008.

[21] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining
digital signatures and public-key cryptosystems,” Communications of
the ACM, vol. 21, no. 2, pp. 120–126, 1978.

[22] J. J. Bartholdi III and J. B. Orlin, “Single transferable vote resists
strategic voting,” Social Choice and Welfare, vol. 8, no. 4, pp. 341–
354, 1991.

[23] Ethereum Foundation, “Remix – ethereum IDE,” 2023. [Online].
Available: https://remix.ethereum.org/

[24] D. Pramulia and B. Anggorojati, “Implementation and evaluation of
blockchain based e-voting system with ethereum and metamask,”
International Conference on Informatics, Multimedia, Cyber and
Information System, pp. 18–23, 2020.


